Tevatron results on heavy flavour production and decays

LHCPS
The Second Annual Conference on Large Hadron Collider Physics

Fabrizio Scuri – INFN Pisa
On behalf of the CDF and D0 Collaborations

Columbia University – New York – June 2-7, 2014

Fermilab

Outline

The <u>most recent</u> Tevatron results on heavy flavor production and decays == > only b hadrons

• B mesons:

rare decays : B_s-> $\mu^+\mu^-$ (see also F. Ligabue, HF 2 session) B_c semileptonic decays : $B_c^+ \to J/\psi \ \mu^+ \ \nu$ orbitally excited B mesons : $B_1^{0,+}, \ B_2^{*0,+}, \ B_{s1}^0, \ B_{s2}^{*0}$ new B π resonances : B(5970)°,+

- b baryons : $\Xi_b^{0,-},~\Omega_b^-$ (J/ ψ and fully hadronic modes)
- Exotic resonances: X(4140)

See also: http://www-d0.fnal.gov/d0_publications/d0_pubs_list_bytopic.html
http://www-cdf.fnal.gov/physics/new/bottom/bottom.html

- S. Donati talk at "Rencontres de Moriond EW" 2014
- M. Kambeitz talk at "Rencontres de physique de la Vallée d'Aoste" 2014
- M. Williams Fermilab theoretical-experimental seminar, Oct. 18, 2013

B Trigger types at Tevatron

CDF and D0

Di-muon (J/ψ)

 $P_{t}(\mu) > 1.5 \text{ GeV/c}$

J/ψ modes

CDF

Displaced track +1 lepton

 $P_{t}(lepton) > 4 \text{ GeV/c}$

 $d_o(track) > 120 \mu m$

Semileptonic modes

(not used in the following)

CDF

2-track trigger

 $P_{t}(track) > 2 \text{ GeV/c}$

 $d_o(track) > 100 \mu m$

Fully hadronic modes

A special tool for reconstructing secondary verteces:

CDF-SVT

The CDF Secondary Vertex Trigger (SVT):

- a unique powerful tool for easier access to to the full hadronic modes of the B-hadrons;
- based on recognition of tracks diplaced w.r.t. the primary vertex from pre-loaded patterns (AM, Associative Memories);

B-meson rare decays: the case of the $B_s \rightarrow \mu\mu$

A long search at Tevatron; in more than 10 years a variety of methods and tools was developed, having outlined the main road for the LHC evidence results

- High purity and efficiency selection of di-muon and reconstrutted B+ samples
- High rejection of the background by applying multi-variate analysis techniques (Neural Netwok, Boosted Decision Tree,...)
- Single Event Sensitivy (SES) determined from the normalization mode :

$$B^+$$
 \rightarrow J/ψ K^+ \rightarrow $(\mu^+\mu^-)$ K^+

• Bayesian and frequentist approaches to set the expected (from SES) and observed limits at 90% (95%) C.L.

$B_s \rightarrow \mu\mu$ result summary

Tevatron history (run I and run II)

World last measurements

B_c^+ production times BR in the J/ $\psi \mu^+ \nu$ decay mode

First observation at Tevatron run I: Phys.Rev.Lett. 81 (1998) 2432-2437

B_c meson: a unique laboratory to study QDC and weak decays;

• It decays only weakly and final states with spectator c-quark or b-quark have different

final states == > no interference

 The dominant production mode is through hard processes

Event selection: associate to the J/Y vertex a third a track that might be:

- the muon in the $B_c^+ \to J/\psi \mu^+ X$ decays, or
- the kaon in the $B^+ \to J/\psi K^+$ sample, or
- \bullet a π^+ , K^+ or p for the misidentified muon background calculation

B_c^+ production times BR in the J/ $\psi \mu^+ \nu$ decay mode

Mass(J/ψμ ⁺) (GeV/c)					
Quantity	Value				
$N(B_c^+ \to J/\psi \mu^+ \nu)$	$739.5 \pm 39.6 \text{(stat)} ^{+19.8}_{-23.9} \text{(sys)}$				
$N(B^+ \to J/\psi K^+)$	$14338 \pm 125 \; (stat)$				
ϵ_{rel}	$4.093 \pm 0.038(\text{stat})^{+0.401}_{-0.359}(\text{sys})$				

B_c^+ background	Systematic uncertainty
Misidentified J/ψ	not used
Misidentified Muon	$^{+9.6}_{-16.5}$
Double fake	$^{+0.5}_{-0.9}$
$bar{b}$ background	± 5.8
Other decay modes	± 16.3
Total	+19.8 -23.9

	$\Delta \epsilon_{rel}$
B_c^+ lifetime	$^{+0.134}_{-0.147}$
B_c^+ spectrum	$^{+0.356}_{-0.303}$
B^{+} spectrum	± 0.055
Tracking eff.	± 0.070
Muon effic.	$^{+0.092}_{-0.087}$
Total systematics	$^{+0.401}_{-0.359}$

$$\frac{\sigma(B_c^+) * BR(B_c^+ \to J/\psi \mu^+ \nu)}{\sigma(B^+) * BR(B^+ \to J/\psi K^+)} = 0.211 \pm 0.012 \text{ (stat.)}_{-0.020}^{+0.021} \text{ (syst.)}$$

B meson excited states: phenomenology

- Fine splitting: Light quark spin s couples with L to j of light quark
- Hyperfine splitting: j couples with spin of heavy quark to total angular momentum J

Two states *narrow* (parity and angular momentum conservation)

CDF can observe three decays per B meson flavor:

$$B_1 \to B^*\pi, B_{s1} \to B^*K$$

 $B_2^* \to B^*\pi, B_{s2}^* \to B^*K$
 $B_2^* \to B\pi, B_{s2}^* \to BK$

Other two states have predicted widths of 150 MeV/c², too broad for CDF

Recent CDF results on B meson excited states

- Two trigger types : di-muon for B modes with J/ ψ and displaced tracks for B modes with D
- Sum of the individual samples with different B decay modes (B->J/ ψ , B->D π , B->D 3 π)
- Signals described by non-rel. Breit-Wigner distributions convoluted with 2 Gaussians (detector resolution)
- Background described by Γ functions or polynomials

The structure associated to the new resonance B(5970) is observed in excited B⁰ and B⁺ at the same position

Excited B meson result summary

Calculation	Ref.	$B_1^{0,+}$	$B_2^{*0,+}$	B_{s1}^0	B_{s2}^{*0}
HQET	[3]	5700	5715		
HQET	[4]	5780 ± 40	5794 ± 40	5886 ± 40	5899 ± 49
HQET	[5]	5623	5637	5718	5732
HQET	[6]	5720	5737	5831	5847
HQET	[7]	5719	5733	5831	5844
Lattice	[8]	5732 ± 33	5772 ± 29	5815 ± 22	5845 ± 21
Lattice	[9]			5892 ± 52	5904 ± 52
Potential	[10]	5699	5704	5805	5815
Potential	[11]	5780	5800	5860	5880
HQS	[12]	5755	5767	5834	5846
Chiral theo.	[14]	5774 ± 2	5790 ± 2	5877 ± 3	5893 ± 3
QCD string	[15]	5716	5724		

(Reference list in the back-up)

CDF updated results (arXiv:1309.5961)

$m~({ m MeV}/c^2)$					
B_{1}^{0}	$5726.4 \pm 0.8 \pm 1.3 \pm 0.4$				
B_2^{*0}	$5736.6 \pm 1.2 \pm 1.2 \pm 0.2$				
B_1^{+}	$5726 \pm 4 \pm 3 \pm 2$				
B_{2}^{*+}	$5737.1 \pm 1.1 \pm 0.9 \pm 0.2$				
$B_{s1}^{\overline{0}}$	$5828.3 \pm 0.1 \pm 0.1 \pm 0.4$				
B_{s2}^{*0}	$5839.7 \pm 0.1 \pm 0.1 \pm 0.2$				
$B(5970)^0$	$5978 \pm 5 \pm 12$				
$B(5970)^{+}$	$5961 \pm 5 \pm 12$				

First evidences of (B π) resonances with 4.4 σ significance

b - baryons

u,d,s, b
$$Y = S + B + \frac{B}{3}$$

For a long time totally a Tevatron field.....

- $\Sigma_b^{(*)+}$ and $\Sigma_b^{(*)-}$ observed in 2006
- Ξ_b^- observed in 2007
- Ω_b^- observed in 2008
- Ξ_b^0 observed in 2011

....now a rich legacy to LHC

 $\Xi_{\rm h}^{\rm 0}$ (5945) observed in 2013 (CMS)

b-baryon decay modes reconstructed at Tevatron

J/Psi modes

Fully hadronic modes

$$\Xi_{b}^{-} \to \Xi_{c}^{0} \pi^{-}, \quad \Xi_{c}^{0} \to \Xi^{-} \pi^{+}, \quad \Xi^{-} \to \Lambda \pi^{-}, \quad \Lambda \to p \pi^{-}$$

$$\Xi_{b}^{0} \to \Xi_{c}^{+} \pi^{-}, \quad \Xi_{c}^{+} \to \Xi^{-} \pi^{+} \pi^{+}, \quad \Xi^{-} \to \Lambda \pi^{-}, \quad \Lambda \to p \pi^{-}$$

$$\Omega_{b}^{-} \to \Omega_{c}^{0} \pi^{-}, \quad \Omega_{c}^{0} \to \Omega^{-} \pi^{+}, \quad \Omega^{-} \to \Lambda K^{-}, \quad \Lambda \to p \pi^{-} \text{ New!}$$

$$A \text{ cascade vertices}$$

$\Lambda_{\rm b}$ mass/lifetime to check the procedure

10²

Binned lifetime fit distributions

- Each bin comes from an independent fit to the mass distribution
- Dashed lines are fit projections

Mass (Λ_b): 5620.14 ± 0.31(stat) ± 0.40(syst) MeV/c2 Lifetime (Λ_b): 1.565 ± 0.035(stat) ± 0.020(syst) ps

Ξ_h^- and Ω_h^- mass and lifetime : J/ ψ mode

Phys. Rev. D 89, 072014 (2014)

Mass (Ξ_b) : 5791.6 ± 2.0(stat) ± 0.40(syst) MeV/c² Mass (Ω_b) : 6051.4 ± 4.2(stat) ± 0.5(syst) MeV/c² Lifetime (Ξ_b) : 1.36 ± 0.15(stat) ± 0.02(syst) ps Lifetime (Ω_b) : 1.77 +0.55 -0.41(stat) ± 0.02(syst) ps

$\Xi^{-(0)}_{h}$ and Ω^{-}_{h} mass and lifetime: full hadronic

b baryon masses and lifetimes: Tevatron vs LHC

After more than two years from the collision end, b-baryon properties measured at Tevatron are still almost competitive with first LHC results ...

	C)F	LHCb		
	Mass (Mev/c²)	Lifetime (ps)	Mass (Mev/c²)	Lifetime (ps)	
Λ_{b}	5620.15 ± 0.31 ± 0.47	1.565 ± 0.035 ± 0.020	5619.53 ± 0.13 ± 0.45	1.482±0.018±0.012	
Ξ_b^-	5793.4 ± 1.8 ± 0.7	$1.32 \pm 0.14 \pm 0.02$	5795.8 ± 0.9 ± 0.4	$1.55 \pm {}^{+0.10}_{-0.09} \pm 0.03$	
Ξ_b^0	5788.7 ± 4.3 ± 1.4				
$\boldsymbol{\Omega}_b^-$	6047.5 ± 3.8 ± 0.6	$1.66 \pm {}^{+0.53}_{-0.40} \pm 0.02$	6046.0 ± 2.2 ± 0.4	$1.54 \pm {}^{+0.26}_{-0.21} \pm 0.05$	

Narrow exotic resonances in the B decay product spectrum

No theoretical reasons to exclude (colorless) bound quark states other than mesons and baryons

No definitive experimental evidence of any such states yet established

X(4140): intrepretation?

Mass well above the 3730 MeV open charm threshold, conventional charmonium should decay into $(D\overline{D})$

X(4140) search: D0 results summary


```
3.1\sigma evidence for the X(4140) Mass 4159 ±4.3(stat) ±6.6(syst) MeV/c^2 Width 19.9 ±12.6(stat) ±8(syst) MeV/c^2 \frac{BR(B^+ \to X(4140)K^+)}{BR(B^+ \to J/\psi \varphi K^+)} = [19 ±7(stat) ±4(syst)] %
```


Summary of the observation status of the J/ ψ ϕ resonances

Debate on the existence of the narrow X(4140) resonance in the J/ ψ ϕ spectrum of the B⁺ -> J/ ψ ϕ K⁺ dacay not yet closed

.... inconsistent results for the resonance around 4300 MeV/c²

	Resonance I		Resonance II		Year	Reference
Experiment	Mass (MeV/c²)	significance	Mass (MeV/c²)	significance		
Belle	Non-observation		$4350.6^{+4.6}_{-5.1} \pm 0.7$	3.2 σ	2009	PRL 104 112004 (2010)
CDF	$4143.4^{+2.9}_{-3.0} \pm 0.6$	>5 σ	$4274.4^{+8.4}_{-6.7}$	3.1 σ	2011	arXiv:1101.6058
LHCb	Non-observation		Non-obse	ervation	2012	PRD 85 091103(R) (2012)
D0	$4159.0 \pm 4.3 \pm 6.6$	3.1 σ	4329	1.7 σ	2013	PRD 86 112004 (2014)
CMS	$4148.0 \pm 2.4 \pm 6.3$	> 5 σ	$4313.8 \pm 5.3 \pm 7.3$	< 3 σ	2013	arXiv:1309.6920

Conclusions

- Tevatron experiments produced high qualitity results in heavy flavor physics during the last two decades, more than 150 paper published.
- The results have been complentary and competitive with the B-factories, showing that precision heavy flavor physics is possible at the hadron colliders.
- Many tools and methods were developed for a clean identification of events with b-hadron production; a rich legacy is left to LHC and to the future B-factories.
- The analysis of the full statistics samples collected by CDF and D0 is not yet completed; possible interesting results could still be obtained

Back-up

Heavy Flavor Production at Tevatron

 $\sigma(pp->bb)$ at Tevatron O(10⁴-10⁵) larger than $\sigma(e^+e^-->bb)$ at the B-factories [Y(4s)] active in the same data taking decade

	√ s	Process	X-section
B-Factories	10 GeV	e⁺e⁻ -> b bbar	1000 pb
Tevatron	2 TeV	p pbar -> b bbar	50 μb
LHC	8 TeV	p p -> b bbar	200 μb

-- all b-hadrons (B+, B0, Bs, Bc, $\Lambda_{\rm b}$, $\Sigma_{\rm b}$, $\Xi_{\rm b}$, $\Omega_{\rm b}$) are produced with production fractions

$$f_d: f_u: f_s: f_{\Lambda} \sim 4:4:1:1$$

-- physics program complementary to the B-Factories

Fine, but...

- σ (pp)_{inel.} ~ 100 mb is a factor 10³-10⁴ larger than σ (bb)
- The BRs of rare b-hadron decays are O(10⁻⁶) or lower

therefore.....

Detectors need to have:

- Very good tracking and vertex resolution
- Wide acceptance and good ID for electrons and muons
- Highly selective trigger

Tevatron run II detectors: a 10 year high performance continuous operation

Both detectors:

• Silicon μ-vertex

CDF: L00 (r_{inner}~1.4cm)

DØ:L0 upgrade (r_{inner}~1.6cm)

- Central tracking in solenoid
- Calorimeters and muon system
- High rate trigger/DAQ

- Good electron, muon ID and acceptance
- Excellent tracking acceptance $|\eta| < 2$ (3)
- Thick shielding before muon system suppresses punchthrough

• L2 trigger on displaced vertices

 $[\sigma(d_0)^48 \mu m]$

• Excellent tracking resolution

 $[\sigma(p_T)/p_T^2 \sim 0.15\% \text{ GeV}^{-1}]$

Good low momentum PID

Reference list for the excited B meson predictions

- [3] N. Isgur, Phys. Rev. D 57, 4041 (1998).
- [4] A. F. Falk and T. Mehen, Phys. Rev. D 53, 231 (1996).
- [5] A. H. Orsland and H. Hogaasen, Eur. Phys. J. C 9, 503 (1999).
- [6] K. Sudoh, T. Matsuki, and T. Morii, Prog. Theor. Phys. 117, 1077 (2007).
- [7] R. N. Faustov, V. O. Galkin, and D. Ebert, Phys. Rev. D 57, 5663 (1998).
- [8] R. Lewis and R. M. Woloshyn, Phys. Rev. D 62, 114507 (2000).
- [9] A. M. Green, J. Koponen, C. Michael, C. McNeile, and G. Thompson (UKQCD Collaboration), Phys. Rev. D 69, 094505 (2004).
- [10] C. J. Nyfält, T. A. Lähde, and D. O. Riska, Nucl. Phys. A 674, 141 (2000).
- [11] S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
- [12] E. J. Eichten, C. T. Hill, and C. Quigg, Phys. Rev. Lett 71, 4116 (1993).
- [13] C. T. Hill, E. J. Eichten, and W. A. Bardeen, Phys. Rev. D 68, 054024 (2003).
- [14] R. Ferrandes, F. De Fazio, and P. Colangelo, Nucl. Phys. (Proc. Suppl.) 163, 177 (2007).
- [15] Yu. S. Kalashnikova and A. V. Nefediev, Phys. Lett. B 530, 117 (2002).

D0 event selection criteria for the B⁺ -> J/ ψ ϕ K⁺ mode

Lxy(B+) >250 μm 1) Require two muons of opposite charge pT(B+) >7 GeV/c $d(J/\psi\phi)$ < 50 µm 2) Require two tracks of opposite charge $1.005 < m(\phi) < 1.035 GeV/c2$ 3) Combine with additional track J/w 4) Reconstruct B⁺ candidate 5) Apply cuts to remove physics backgrounds 6) Choose best single candidate per event Pick candidate with lowest M($\phi \rightarrow KK$) 95% efficient for signal Possible sampling bias tested/corrected in MC